
www.manaraa.com

Abstract
We observe that end-user web programming tools frequently deal
with web data and that there is a clear synergy between these tools.
Making them interoperate will benefit both users and researchers
alike. The first step toward this goal is to adopt a common data
model, such as RDF. More research challenges remain to make
them interoperate, such as fleshing out a common API and a unified
user interface mechanism for the user to orchestrate the tools to
perform complex tasks.

Keywords
End user programming, Web, data modeling, screen scraping,
RDF.

1.	 Introduction
End-user web programming (EUWP), like programming in gen-
eral, often involves dealing with data. For example, the Creo+Miro
system [7] watches the user interact with tidbits of information on a
web page (e.g., looking up the nutritional information for an ingre-
dient in a recipe) and generalizes the user’s actions so that they can
be applied in similar contexts (e.g., looking up nutritional informa-
tion for all ingredients of any recipe). The Web Summary Frame-
work [6] lets the user extract data from several web pages and web
sites and store it all together as research materials for a particular
goal (e.g., buying a house).

Not only do these tools have to deal with data, they have to deal
with generic data found on the Web, ranging from recipes to houses
for sale, sharing little if anything in common. In fact, these end-user
programming tools are most useful when applied to data in the long
tail of the Web precisely because the data in the tail is not popular
enough to warrant investments for commercial tools and users have
to resort to self-help programming.

1.1	T he Case for Interoperability
If we think of each EUWP tool not as a monolithic application but
as a set of elementary features, such as the feature for plotting a
map, many of which deal with data, there is clearly an opportunity
for the user to mix and match the features from different EUWP
tools, getting the best of all worlds. Moreover, whereas EUWP

Adopting A Common Data Model
for End-User Web Programming Tools

Copyright is held by the ACM SIGCHI Committee. Distribution of these
papers is limited to classroom use, and personal use by others.
CHI 2009, April 8–12, 2009, Madrid, Spain.
ACM

David F. Huynh
Metaweb Technologies Inc.
631 Howard St. Suite 400

San Francisco, CA 94105, USA
david@metaweb.com

David R. Karger
MIT CSAIL

32 Vassar Street
Cambridge, MA 02139, USA
karger@csail.mit.edu

tools are intended for the user to take matter into her own hands
when web sites don’t let her do what she wants, the ability to mix
and match the EUWP tools’ features lets she take matter into her
own hands once more when each standalone EUWP tool doesn’t let
her do what she wants, but a combination of these tools does.

Interoperability among these tools is also a boon for researchers.
Instead of having to support every feature for making a research
project compelling, even if many of these features do not constitute
the core contribution of the research, now a researcher can rely on
features borrowed from other tools to make her case. In addition,
how features from different tools are combined is in itself open for
research and can now be explored by users themselves.

1.2	R equirements for Interoperability
There are two requirements for interoperability. First, the tools
themselves must be able to programmatically interoperate. For
example, they must be able to invoke one another and pass data
among themselves.

Second, there must be a user interface mechanism for the user to
orchestrate the tools to work together toward some complex goal.
For example, to orchestrate Unix command line tools, the user
pipes one tool’s standard output to another tool’s standard input.
The operating system’s shell provides a command line syntax—
a user interface mechanism nevertheless—for the user to perform
this orchestration.

In this paper, we focus primarily on the first requirement. The
second requirement is a whole topic of research unto itself. We will
only discuss it briefly at the end.

1.3	C ontribution
To satisfy the first requirement for interoperability, we propose the
adoption of a common data model in all EUWP tools. This data
model serves as a blackboard through which the tools can share
their data. It should be capable of expressing as many different
types of data as possible and should not require that these types
be known a priori. We suggest RDF as a possible data model to
adopt.

1.4	O utline
For the remainder of the paper, we first present an extensive sce-
nario that illustrates how these various EUWP tools might be used
together in a complex task. In section 3, we describe the require-
ments for the common data model and suggest a possible off-the-
shelf solution. We provide related work in section 4, discuss future
work in section 5, and conclude in section 6.

www.manaraa.com

that the computer can figure out the best choice automatically. Hu-
mans are still needed in the loop, and they are best facilitated with
visualizations of the data that help them make their decisions. The
Web Summary Framework, Marmite, Vispedia [5], Piggy Bank,
and Potluck all support custom visualizations. The Web Summary
Framework is particularly designed for composing an information
dashboard from research materials from the Web.

Certain visualizations might require appending additional data to
what was collected so far. For example, to get a map view, Ann and
Bob need to geocode all the addresses associated with the homes
they found. This requires processing the previously extracted data
to produce arguments that can be submitted to a geocoding service.
For example, the addresses gotten from scraping might not contain
the city name as they are all in Boston, so the city name must be
appended to them before geocoding.

The whole process of scraping for new data and constructing
visualizations can be orchestrated using CoScripter. And when Ann
and Bob change one of their criteria, it’s just a matter of updating
that criterion with CoScripter and then letting CoScripter invoke
the other tools to extract data and generate new visualizations.

To understand the housing market in Boston, Ann and Bob also
read local only newspapers on the subject, paying close attention to
the ongoing market crash. These news articles don’t contain struc-
tured data, but they provide valuable insights that Ann and Bob
want to refer to often. A tool like Piggy Bank allows them to tag
these articles with keywords and save their links into the same da-
tabase as all other bits and pieces of research materials.

Finally, having done so much work for their research, Ann and
Bob want to help other people who are also buying houses by shar-
ing all of their end-user programming scripts. Of course their scripts
might not cover all conceivable needs of everyone else, but given
interoperability among the tools, other people can easily use their
own tools to modify the whole workflow to suite their purpose.

3.	C ommon data model
As illustrated above, various EUWP tools might be orchestrated
to achieve a complex goal. The first step to enable such interoper-
ability among the tools is a common data model. In this section,
we discuss the requirements for such a data model and suggest an
off-the-shelf data model to adopt.

3.1	R equirements
The data extracted from the Web or to be entered into the Web often
consists of chunks smaller than whole files. For example, a single
product search result page contains many product records, and sim-
ply storing that page as a single file jumbles the different products
together, making it harder to work with them as individual entities.
Furthermore, existing browser-based user tools have demonstrated
compelling features that leverage the data not as text documents
but as structures: records can be sorted and filtered by fields in
Piggy Bank and the Web Summary Framework. This requires that
structure queries be supported on the data. Thus, the shared data
should reside in something that resembles a database more than a
file system.

While conventional relational databases support structured que-
ries, they require the schemas of the data be designed once initially
and kept constant. However, in order to support browser-based
tools built for research, innovative and diverse by their very nature,

2	S cenario
There have been many research tools built for end-user program-
ming on the Web, and we wish to illustrate through an extensive
scenario here how they might be used together.

Ann and Bob have just moved to Boston and are looking for
a new house to buy. There are many factors for them to consider.
First, the house must be located where it is convenient for them
to get to work either by bike or by public transportation, and for
their children to walk to school. Of course the neighborhood must
be safe from crimes and should be far from high traffic zones, and
there must be essential shops (grocery store, pharmacy) within
some distance. The house itself should meet certain criteria: at least
four bedrooms, two bathrooms, a nice floor plan, a double garage or
street parking, large enough shaded back yard and front yard, good
views from the master bedroom’s window, built within the last 20
years, etc. Of course, Ann’s and Bob’s budget might force them
to compromise on some of these criteria. Since they don’t know
the Boston area well, they want to take time to learn and do their
research carefully. This might take months.

There are several web sites that list houses for sales, such as
realtor.com, but they don’t all cover the same listings. To get a
complete and accurate picture, Ann and Bob want to integrate the
data from as many of those sites as possible. The data must first be
extracted from those sites, and that task is best done with a tool like
the Web Summary Framework, Marmite [12], or Sifter [9].

To keep the data up-to-date, Ann and Bob need to perform data
extraction periodically. Each time they have to log into each of
those sites, browse to the right page, perform a particular search,
and then screen scrape the results. Because some of the sites use
AJAX, it’s not possible to bookmark their searches; instead they
have to follow a sequence of UI actions. To avoid all of this tedious,
repetitive work, Ann and Bob use CoScripter [11] to automate the
whole process. CoScripter stores Ann’s and Bob’s search criteria
and enters those criteria into each site. As Ann and Bob get to know
the housing market better, their criteria change, and it’s convenient
to have to specify their criteria in one place only, namely in Co-
Scripter.

As some of these listing sites don’t provide sufficiently powerful
browsing and searching features, Ann and Bob still need to filter the
extracted data down further to just those listings that match all of
their criteria. This is best done with the faceted browsing features
offered by Piggy Bank [8].

There are also various other types of data to include in the re-
search, such as data about schools, shops, crimes, public transpor-
tation routes and stops, biker-friendly streets, etc. This data can
be scraped once since it does not change much. However, since it
consists of quite a variety of types of data, it requires a very flex-
ible data model. Moreover, because there are many sites to scrape,
Ann’s and Bob’s scraping efforts might not produce properly
aligned data sets on the first try. Ann and Bob might even split the
scraping work between them and try to merge their results later. So
they will need to realign the data sets after scraping, using a tool
like Potluck [10].

Given that all the data needed is properly extracted, aligned, and
kept up-to-date, Ann and Bob still need to visualize it in ways to
help them learn about the housing market as well as compare their
options and ultimately make their decisions. Note that not all crite-
ria can be specified objectively (e.g., “large enough shaded yards”
and “nice floor plan” are subjective criteria), so there is no way

www.manaraa.com

the common data model must allow new schemas to be incorpo-
rated into the system during runtime.

Finally, data transiting from and to the Web can be web-like in
form, containing links between seemingly disparate domains of in-
formation. For example, the data about a particular book may link
not just to the book’s author and its reviews, but, as that book is
based on history, to real people, places, artifacts, etc. that it men-
tions. For another example, the data about a writer may link not just
to her books but, if she is also an actress, to the films in which she
has performed. If such links cannot be made, then certain informa-
tion important to the user might be left unrecorded. Thus, the com-
mon data model must be web-like, capable of supporting arbitrarily
interconnected rather than disjoint schemas.

3.2	RD F as A Possible Solution
One such data model is RDF [2], designed specifically for exchang-
ing and integrating web data. It is a semantic network model con-
sisting of “nodes and arrows”, or entities and relationships, which
are identified globally with URIs. Piggy Bank and Sifter are already
using RDF and have demonstrated the ease with which any kind of
web data can be incorporated into the system.

4	R elated Work
The strategy of using a common data model to facilitate coopera-
tion between independently developed tools is a time-proven strat-
egy; file systems and clipboard models are proofs. There have been
many efforts to enrich file systems so that they can store more prop-
erties per file, e.g., Apple Newton’s Soup [3], WinFS [4].

Note that the web browser Firefox has started to allow exten-
sions to instantiate and use its internal SQLite databases. These
could be used to hold instances of the shared data model, and
communicate them from one component to another. The Mozilla
Weave project [1] will improve this support further and let the data
migrate seamlessly between different computers through a central
data cloud service. However, since Weave is providing a common
storage and replication model rather than a common data model,
data for one extension remains opaque to another (much as files for
one application generally remain opaque to another application).
Thus it is not possible for the extensions to cooperate accidentally
unless their developers decide to cooperate. By advocating a com-
mon data model, we allow unplanned (by the developers) coopera-
tion to happen more often.

5	Di scussion
As mentioned in the Introduction, there are two requirements for
interoperability: programmatic interoperability and user interface
mechanism for orchestrating interoperation. Adopting a common
data model is only the first step toward programmatic interoper-
ability. It is only the first step because, in order for such a tool as
CoScripter to automate a long process involving several other tools
as described in our scenario, there must also be a common API for
invoking these tools. In fact, even in the absence of CoScripter, one
tool might want to directly invoke another.

The requirement for a user interface mechanism for orchestrat-
ing interoperation is another challenge to address. Two possible
solutions come to mind. First, a structured data copy-and-paste
framework can be provided so that the user can copy data from one
tool to another. Second, a central store can be provided for all data.

Each subset of data within this store can be referenced by a name
or a query. In order to pass a blob of data from one tool to another,
the user can name that blob of data, or ask the first tool for a query
that describes that data, and then enter the name or the query into
the second tool.

While those two possible solutions might be sufficient for some
cases, they can be cumbersome or unusable when the interaction
between the tools is more coupled. Consider using Sifter first for
adding faceted browsing to a search result set, and then deciding
subsequently to use the Web Summary Framework to compose a
summary template for some of the search results. Sifter’s philoso-
phy is to support direct manipulation to avoid requiring the user
to label the fields. If the only way for the Web Summary Frame-
work to get data from Sifter is through the central store or a one-
time copy-and-paste operation, and data is the only thing passed
between the tools, then Sifter must force the user to label the fields
explicitly first because otherwise, without the presentation template
from the original site that Sifter has extracted, the fields can easily
become meaningless and confused in the Web Summary Frame-
work. For example, the “sale price” and “used price” fields are hard
to distinguish if they are not explicitly labeled.

6	C onclusion
In this paper, we observe that EUWP tools frequently deal with web
data and that there is a clear synergy between the tools. Making
them interoperate will benefit both users and researchers alike. The
first step toward this goal is to adopt a common data model, such
as RDF. More research challenges remain to make them interoper-
ate, such as fleshing out a common API and a unified user interface
mechanism for the user to orchestrate the tools to perform complex
tasks.

References
[1]	 Mozilla Labs » Weave. http://labs.mozilla.com/projects/

weave/.
[2]	 Resource Description Framework (RDF) / W3C Semantic

Web Activity. http://www.w3.org/RDF/.
[3]	 Soup (Apple Newton), Wikipedia. http://en.wikipedia.org/

wiki/Soup_(Apple_Newton).
[4]	 WinFS, Wikipedia. http://en.wikipedia.org/wiki/WinFS.
[5]	 Chan, B., L. Wu, J. Talbot, M. Cammarano, and P. Hanra-

han. Vispedia: Interactive Visual Exploration of Wikipedia
Data via Search-Based Integration. IEEE InfoViz 2008.

[6]	 Dontcheva, M., S.M. Drucker, G. Wade, D. Salesin, M.F.
Cohen. Summarizing Personal Web Browsing Sessions.
UIST 2006.

[7]	 Faaborg, A. and H. Lieberman. A Goal-Oriented Web
Browser. SIGCHI 2006.

[8]	 Huynh, D.F., S. Mazzocchi, and D.R. Karger. Piggy Bank:
Experience the Semantic Web Inside Your Web Browser.
ISWC 2005.

[9]	 Huynh, D.F., R.C. Miller, and D.R. Karger. Enabling Web
Browsers to Augment Web Sites’ Filtering and Sorting
Functionalities. UIST 2006.

[10]	 Huynh, D.F., R.C. Miller, and D.R. Karger. Potluck: Data
Mash-Up Tool for Casual Users. ISWC 2007.

www.manaraa.com

[11]	 Leshed, G., E. Haber, T. Matthews, T. Lau. CoScripter: Au-
tomating & Sharing How-To Knowledge in the Enterprise.
SIGCHI 2008.

[12]	 Wong, J. and J. Hong. Making Mashups with Marmite: To-
wards End-User Programming for the Web. SIGCHI 2007.

